Table 1 Summary finding table with herbal medicine vs. usual care for maternal and infant blood type incompatibility

Patient or population: Pregnant women with maternal and infant blood type incompatibility Settings: The outpatient department of the traditional Chinese medicine hospital Intervention: Herbal medicine versus usual care

Outcomes	Illustrative comparative risks* (95% CI)		Deletive effect	Nelof	Quality of the
	Assumed risk Usual care	Corresponding risk Chinese herbal medicine	Relative effect (95% CI)	No of Participants	evidence (GRADE)
Incidence of the hemolytic disease of the newborn	253 per 1000	76 per 1000 (46 to 124)	RR 0.3 (0.18 to 0.49)	1546 (12 studies)	⊕⊖⊖⊖ very low ^{1,2,3}
Number of the patients whose antibody titer less than 1:128	265 per 1000	571 per 1000 (411 to 796)	RR 2.15 (1.55 to 3)	663 (7 studies)	⊕⊖⊖⊖ very low ^{1,2,3}
Number of the patients whose antibody titer less than 1:64	180 per 1000	489 per 1000 (357 to 671)	RR 2.71 (1.98 to 3.72)	1727 (15 studies)	⊕⊖⊖⊖ very low ^{1,3,4}
Incidence of the icterus neonatorum	198 per 1000	77 per 1000 (55 to 107)	RR 0.39 (0.28 to 0.54)	1086 (12 studies)	⊕⊕⊖⊖ Iow ^{1,3}
Umbilical cord blood bilirubin (umol/L)	The mean umbilical cord blood bilirubin (umol/l) in the control groups was 32.35 umol/L	The mean umbilical cord blood bilirubin (umol/l) in the intervention groups was 4.33 lower (5.84 to 2.82 lower)		608 (6 studies)	⊕ ⊕ ⊖⊖ low ^{1,3}
Apgar scores Scale from: 0 to 10.	The mean Apgar scores in the control groups was 9.23	The mean Apgar scores in the intervention groups was 0.1 higher (0.06 lower to 0.26 higher)		572 (6 studies)	⊕⊕⊝⊖ Iow ^{1,3}
Weigh of newborn (kg)	The mean Weight of newborn in the control groups was 3.10	The mean Weight of newborn in the intervention groups was 0.06 higher (0.04 lower to 0.15 higher)		578 (5 studies)	$\oplus \bigcirc \bigcirc \bigcirc$ very low ^{1,2,3}

*The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI). **CI:** Confidence interval; **RR:** Risk ratio:

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Majority trials had unclear risk of selection, detection, attrition and reporting bias

² The I square test showed a significant statistical heterogeneity among trials (I-square larger than 50%)

³ The asymmetric funnel plot indicated the possibility of publication bias.

⁴ The I square test showed a significant large statistical heterogeneity among trials (I square larger than 70%)